Digital Communication Systems

EES 452

Asst. Prof. Dr. Prapun Suksompong

prapun@ siit.tu.ac.th

5. Channel Coding

(- Y
- ~

Review: Channel Encoder and Decoder
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Vector Notation [/} S ——— \

0, 0: the zero vector
—

: the all-zero vector)

® V: column vector v; ( )|
i 1, 1: the one vector

n ! (the all tor) |

i (the all-one vector |

® I': row vector (11, 1) ey Ty e 1) ( __________________ '

° Subscripts represent element indices inside individual
vectors.

v; and 17 refer to the i elements inside the vectors V and T,
respectively.

When we have a list of vectors, we use superscripts in
parentheses as indices of vectors.
—(1 (2 (M
V( ) V( ) V( )

) ) "mr)
[(1), 1_‘(2), e [(M) is a list of M row vectors
i .
a V( )and [(l) refer to the i vectors in the corresponding lists.

is a list of M column vectors
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Channel Decoding

® Recall MAP decoder _ ML decoder is _ Min distance
is optimal optimal decoder is optimal
BSC with

Codewords
are equally p <05
likely

MAP decoder is the optimal decoder.

When the codewords are equally-likely, the ML decoder the same as the MAP decoder; hence it is also
optimal.

When the crossover probability of the BSC p is < 0.5,
ML decoder is the same as the minimum distance decoder.

* In this chapter, we assume the use of minimum distance
decoder.

)_?(Z) = arg m}_i(n d()_(, X)

* Also, in this chapter, we will focus
less on probabilistic analysis,
but more on explicit codes.

Digital Communication Systems

EES 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th

5.1 Binary Linear Block Codes




Review: Block Encoding

® We mentioned the general form of channel coding over BSC.

® In particular, we looked at the general form of block
codes.

|||||||||||||->[BlockEncoder]->i|||||||||||I||||||

k bits k bits k bits n bits n bits n bits

Code length

“Dimension” of the code

(n,k) codes: n-bit blocks are used to conveys k-info-bit blocks

Assumen > k

Rate: R = E :
n Recall that the capacity of BSCis C = 1 — H(p).
For p € (0,1), we also have C € (0,1).
Achievable rate is < 1.

\—> codewords \—>“messages”

Max. achievable rate

e C = the collection of all codewords for the code considered.
e Each n-bit block is selected from C.
* The message (data block) has & bits, so there are 2* possibilities.
® A reasonable code would not assign
the same codeword to different messages.
® Therefore, there are 2* (distinct) codewords in C.
M =2k possibilities
Choose M = 2k from
2n possibilitics to be
used as codewords.
* Ex. Repetition code withn = 3

/




MATHEMATICAL SCRIPT CAPITAL C

Charbase

A visual unicode database

« U+1D49D INVALID CHARACTER U+1D49F MATHEMATICAL SCRIPT CAPITALD —

U+1D49E: MATHEMATICAL SCRIPT CAPITAL C

G+ 0

Your Browser

C

Decomposition

C

U+0043

Index

U+1D49E (119966)

Class

Uppercase Letter (Lu)

Block

Mathematical Alphanumeric Symbaols

Java Escape

"ud835\udcge”

Javascript Escape

“.ud83s\udcge”

Python Escape

uUooo01 d4ge’

HTML Escapes

&#119966; &#x1d49e;

URL Encoded

q=":F0%9D%92%9E

UTF8 0 9d 92 9e

UTFi16 d835 dc9e

GF(2)

® The construction of the codes can be expressed in matrix form
using the following definition of addition and multiplication

of bits:

@0 1 « 10 1
010 1 0(0 O
11 O 110 1

® These are modulo-2 addition and modulo-2 multiplication,
respectively.

® The operations are the same as the exclusive-or (XOR)
operation and the AND operation.
We will simply call them addition and multiplication so that we can
use a matrix formalism to define the code.

® The two-element set {0, 1} together with this definition of
addition and multiplication is a number system called a finite

field or a Galois field, and is denoted by the label GF(2).




Modulo operation

® The modulo operation finds the remainder after division of

one number by another (sometimes called modulus).

* Given two positive numbers, @ (the dividend) and 11 (the

divisor),

* a modulo n (abbreviated as @ mod n ) is the remainder of the

division of @ by n.
* “83mod 6”=75

e “5mod 2” =
In MATLAB, mod(5,2) =

° Congruence relation

5=1 (mod?2)

1.

quotient 13
divisor )83 dividend

6

23

quotient 2

divisor 2 )5 dividend

4

18

5 remainder

] remainder J

GF(2) and modulo operation

* Normal addition and multiplication (for 0 and 1):

—_ O +

0 1
0 1
1 2

— O X

0 1
0 0
0 1

* Addition and multiplication in GF(2):

@10

1
010 1 0
1|1 O 1

0 1
0 0
0 1

~




GF(2)

® The construction of the codes can be expressed in matrix form
using the following definition of addition and multiplication of

bits: S0 1
010 1
1({1 O
® Note that _ 0B0=0
X®0=X i S
X®1=X 1§,
XOX=0 Saio0

The property above implies —X = X
H_/

0 1
0(0 O
110 1

By definition, “—X” is something that, when added with X, gives 0.

* Extension: For vector and matrix, apply the operations to the elements
the same way that addition and multiplication would normally apply

(except that the calculations are all in GF(2)).

J

Examples

e Normal vector addition:

[1 -1 2 1]
-2 3 0 1]
= [—1 2 2 2]

® Vector addition in GF(2):

10 1 1]
o 10 119
=1 1 1 0]

~

Alternatively, one can also apply
normal vector addition first, then

apply “mod 2” to each element:

[1 0 1 1]
0 10 1]

=1 1 1 2]

lmon

[1 1 1 0]

/




Examples

® Normal matrix multiplication:

(7% (=2))+ (4 x3)+(3x (=7)) = =14 + 12 + (-21)

R B

® Matrix multiplication in GF(2):

—_

( Alternatively one can also apply normal

@-DeO-00®(1-1) =12021
matrix multiplication first, then apply
“mod 2” to each element:

|
|
i
[1 0 1][1 1] [O 1] ' o0 1111 "
0 0 1(j0 1|=]J1 O :[001”][101&10]
1 1 1111 O 0 0 (111 1l

h————————————————————————/
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Evariste Galois
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On the morning of May 30th, 1832, two men in Paris fought a duel. Not an unusual

event for those days. One of the men was shot in the gut and died the following day...




Evariste Galois

“Ne pleure pas, Alfred!
J'ai besoin de tout mon courage
pour mourir a vingt ans!"

- Evariste Galois

Do not cry Alfred. I
need all my courage
to die at 20.

-

Evariste Galois
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The night before the duel, Galois sent several letters. Some were to his political
Colleagues but one of his letters in particular has become famous amongst

mathematicians. Fearing that he might die, Galois assembled his mathematical

discoveries and sent them to his friend with instructions to pass him along to two of

the best mathematicians of the day: Gauss and Jacobi.




Evariste Galois

JOURNAL DE MATHEMATIOUES
e denmie i la théone des équations primitives solubles par ra-
dicaux,, j'ai mis en juin 1530, dans le Hulletin de Févussae, e ana-
Fvse sur les imaginaires de Ia Hidoric des nombres,

On tronverns cisjointe [*] 1y démonsteation des 1he
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The papers laid dormant
until over a decade later
when the letter made its way
to the mathematician
Liouville who took the time
to read through the
manuscripts and sought to

their publication.

The world finally learned

that as a teenager Galois had

solved one of the most
important problems in

algebra.

Evariste Galois:

ax+b=0 = x=-—-
a

bbb -4dac

3
= =iXx=
ax +bx+ec=0 5%

O |

Contribution

JJ(-27a2d+9abc-2b3)3+4(3ac-1;3)3 —27a*d+9abe-2b

axr +bx +cx+d=0 = x=

3V2a

1 2

o JZ("-9.-‘)0":'-?Iaec+2?ad:+27532+J{!c’-?bdr-?lnec‘+2?nd:+
2c

. b
a.\"+b.\"+cx‘+dx+e-_-0=o.\'=—ﬁ |l

3\:1’-2-(.'

[ https://www.youtube.com/watch?v=McObvea6G3I ]




g
Evariste Galois: Contribution

In algebra, you learn to solve

Py AN equations. To solve quadratic
a

equations you use a

R . To solve cubic

ax’+bx+c=0 = x=
2a

equations, you use the less

well-known
\‘/\/(—27a2d+9abc—263)2+4(3 ac—b

Sﬁa

ax’ +bh¥+ex+d=0 = x= and to solve equations of

degree four, you use the

Galois proved that for

b 1 » o \"/21‘3—9de—7209(+2
axr+b +crrtdrite=0 = x=——= | —-"—+

degrees five and higher, there
= S =)
4a 2 |d4ac 3a

are no general formulas.

To prove this Galois created new mathematics

@ which we now call in his honor.

@ [ https://www.youtube.com/watch?v=McObvea6G3I ] J




Evariste Galois: Life

Galois’ tale was tinged

with frustration,

trouble, and tragedy.
(- J

Evariste Galois: Life

@ [ https://www.youtube.com/watch?v=McObvea6G3I ]




Evariste Galois: Life

Unfortunately, Galois was not very good
at patiently explaining his ideas to
others. He entered math contests and
sent his work to leading mathematicians
but his writing was considered

incomprehensible.

)
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troubled

enius, indeed!
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BSC and the Error Pattern

® For one use of the channel,

x{} >_>y

® Again, to transmit k information bits, the channel is used n

times.

l_)%[ Encoder } > X G) BSC >——>X

1xk Ixn

y=x®De

N =

error pattérn
L J
a N
Additional Properties in GF(2)

® The following statements are equivalent

a®b = c

Having one of these is the same
a@c - b as having all three of them.
b®c = a

® The following statements are equivalent

adb = ¢
g@g = h Having one of these is the same
b@ c=a as having all three of them.

® In particular, because X®e = Y, if we are given two

quantities, we can find the third quantity by summing the
other two.

© y




Linear Block Codes
® Definition: Cis a (binary) linear (block) code if and

only if C forms a vector (sub)space (over GE(2)).

In case you forgot about the concept of vector space, ...

Equivalently, this is the same as requiring that
if)_((l) and )_((2) € C, then )_((1)@)_((2) € C.

Note that any ey linear code C must contain 0.

® Ex.The code that we considered in Problem 5 of HW4 is
C = {00000,01000,10001,11111}

Is it a linear code?

J
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Ex. Checking Linearity

e C = {00000,01000,10001,11111}

® Step 1: Check that 0elC.
OK for this example.

® Step 2: Check that
if XM and x@ € C, then xV@x@ € (.

00000
01000

10001

@ 11111

=
Ex. Checking Linearity

e C = {00000,01000,10001,11111}

* Step 1: Check that 0 ecC.
OK for this example.

* Step 2: Check that
if )_((1) and )_((2) € C, then )_((1)@)_((2) € C.

Here, we have many counter-examples. So, the code is not linear.

L 00000 01000 10001 11111

01000 00000 11001 10111

Lol 10001 11001 00000 01110

@ IROSEE (1111 10111 01110 00000
.

O |
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Checking Linearity

® Step 1: Check that 0 € C.
® Step 2: Check that
if XM and x@ € ¢ then xP@x? € C.
¢ It may seem that we need to check 1C|? pairs.

¢ Actually, we need to check only (n ; 1) pairs.

EERETITNTTE

it - 11001 10111
: 11001 [OG00ON o1110

@ o111 o1110 [NOGOGON xex =0
N

4

xDex®@ = x@ex® J

~

Ex. Creating Linearity

® We have checked that
C = {00000,01000,10001,11111}

is not linear.

° Change one codeword in C to make the code linear.

I
IECCCCCN I
I I

I N N
o NN ——
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Ex. Creating Linearity

® We have checked that 11001
C =¢00000Q0 1000,10001

is not 1

» one codeword in C to\make the code linear.

® Chang

For linearity, we always need 0 If we want these two to be in our code, then their sum

must be in our code too. So, we change 11111 to 11001.

e oo T otow T mor T
E
o000 | | [EERCSTERERTY
o N

-

9 |

Ex. Creating Linearity

® We have checked that
C = {00000,01000,10001,11111}

is not linear.
° Change one codeword in C to make the code linear.

® Three solutions: 11001

C= {00000,01000,10001,-1—1—1—1—1—}
10111 00000 01000 10001 11111

C = {00000,01000,+006+,11111} JILER 01000 00000 11001 10111
IOl 10001 11001 00000 01110

01110
C = {00000,0+0600,10001,11111}

@ y

IgeReE 11111 10111 01110 00000
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Linear Block Codes: Motivation (1)
® Why linear block codes are popular?

® Recall: General block encoding

Characterized by its codebook.

o The table that lists all the 2¥ mapping from the k-bit info-block s
to the n-bit codeword x is called the codebook.

o The M info-blocks are denoted by s(!), s, ... sM),
The corresponding M codewords are denoted by xV, x®), ... x(M),
respectively.
index ¢ | info-block s codeword x

1 |[sMW=000...0 [xV=
2 [s®=000...1 |x?=

[See Section 3.5 of the lecture notes.]

M SO0 =111, .1 | x =

Can be realized by combinational / combinatorial circuit.

If lucky, can used K-map to simplify the circuit.

-

©

Linear Block Codes: Motivation (2)
® Why linear block codes are popular?

® Linear block encoding is the same as matrix multiplication.
See next slide.
The matrix replaces the table for the codebook.

The size of the matrix is only k X 7 bits.
Compare this against the table (codebook) of size 2k x (k + n) bits for

general block encoding,
® Linearity = easier implementation and analysis
® Performance of the class of linear block codes is similar to
performance of the general class of block codes.

Can limit our study to the subclass of linear block codes

without sacrificing system performance.

Choose M = 2K from

2" possibilities to be




Example
e C = {00000,01000,10001,11001}

® [et
O 1 0 0 O
G =
1 0 0 0 1
Find bG when b =/0 0]
Find bG when b

Find bG when b
Find bG when b =\[1 1].

All possible two-bit vectors

Block Matrices

e A block matrix or a partitioned matrix is a matrix that
is interpreted as having been broken into sections called

blocks or submatrices.

° Examples:

2.2 5 [10 2710 2 s
Tov e @ 3 3C34J\5 10D5 3 6
7F2 5 3 106 10 3

8 3 9 8 3 6 5/

/




Block Matrix Multiplications

e Matrix multiplication can also be carried out blockwise
P

(assuming that the block sizes are compatible).

MIT OpenCourseWare
2.34M subscribers

MIT 18.06 Linear Algebra, Spring 2005
Instructor: Gilbert Strang

Introduction to

LINEAR ALGEBRA

FIFTH EDITION

GILBERT STRANG

[ https:// }uultl.|n;’l X4C-JpTkgY?t=1103 ]

L

Ex: Block Matrix Multiplications

2,2 5 [10 27y0 2 5
Tone 6t 3 \3C3 zj 5 10D5 3 6
(GA2 3B4 x|3 3 4(1 1 5 5 6
7F2 5 |3 10F6 10 3
8 369 8 3 6 5
=({108 73 136][175 150 193 126 149
155 85 164224 213 197 158 165
AC+BE AD+BF

2 10 2
10 5 3 6
oot 33 Y
10 6 10 3

8 3 6

:(Eos 73 136 175}[
55 85 164 224

150 193 126 149
213 197 158 165

XG

XH




Linear Block Codes: Generator Matrix

g(l)

g(Z)

For any linear code, there is a matrix G =

g(k)

“kxn

called the generator matrix
such that, for any codeword X, there is a message vector b

which produces X by

©

From b to X
g(l)
(2)
x =bG = [b; b, -+ by] 5
g(k)
“kXn
k .
= b, gD D bg® @ D bg® = z b,gV)
5 5 5 j=1 02
® Any codeword is simply a linear combination of the rows

of G.
The weights are given by the bits in the message b




Linear Combination in GF(2)

¢ A linear combination is an expression constructed from a
set of terms by multiplying each term by a constant (weight)
and adding the results.

® For example, a linear combination of x and y would be any

expression of the form ax + by, where a and b are constants.

L General GXPI'QSSiOIl!
Cla(l) _|_ Cza(z) _|_ cos _|_ Ckz_l(k)

* In GF(2), ¢; is limited to being O or 1. So, a linear
combination is simply a sum of a sub-collection of the

vectors.

Linear Block Codes: Generator Matrix

g(l)

g(Z)

For any linear code, there is a matrix ( =

g(k)

called the generator matrix Texn

such that, for any codeword X, there is a message vector b

WhiCh prOduceS X by k 1]](,)(]—2 Sl]]]]]]]dti(,)]]
- >
—
Note: \_J o

(1) Any codeword can be expressed as a linear combination of the

Note also that, given a matrix G, the (block)

code that is constructed by (2)is always linear.

rows of G
(2)C = {bG:b € {0,1}"} [

)




a N

Fact: If a code is generated by plugging in every possible b into x =bG, then the code will automatically

be linear.

Proof

k
If G has K rows. Then, b will have k bits. We can list them all as b(l),hm,...,h(z ).The corresponding codewords

are
x=b"G fori=1,2,...,2%.

Let’s take two codewords, say, g(i') and g(iZ) . By construction, g(il) zl_)(i')G and g(iZ) =l_)(i2)G . Now, consider the

sum of these two codewords:

y @X(iz) _ D(il)G @D(iz)G _ (l_)(il) @D(iZ) )G

Note that because we plug in every possible b to create this code, we know that h(i‘) (-Dl_)(iZ) should be one of these

b. Let’s suppose Q(i‘) @l_)(iZ) = QM for some D(i") . This means

X(il) ) X(iz) _ b(is)G ]

But, again, by construction, l_)("’)G gives a codeword g(""’) in this code. Because the sum of any two codewords is

still a codeword, we conclude that the code is linear.

@ y
- ~

Linear Block Code: Example

G =

oS = O
_—0 O

1 0
0 1
1 1

oS O =
O =

* Find the codeword for the message b = [1 0 0]

® Find the codeword for the message b = [0 1 1]

* How many codewords do this code have?
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Linear Block Code: Codebook
1 0 0 1 0 1 1 0 01 0 1
G=|0 1 0 0 1 1 00 1 1 1 0
O 01 1 1 O = (b1, by, b3, by @ b3, b, @ b3, by D by)
b X
O 0 00 0 0 0 O O
O 0 110 0 1 1 1 O
0O 1 00 1 0 0 1 1
0O 1 110 1 1 1 0 1
1 0 0|1 0 0 1 0 1
1 0 111 0 1 0 1 1
1 1 011 1 0 1 1 O
1 1 111 1.1 0 0 O
MATLAB: Codebook
G=[100101; 01 0011; 00111 0];
[B C] = blockCodebook(G)
function [B C] = blockCodebook(G)
[k n] = size(G); 1 0 01 0 1
% All data words G=/0 1 0 0 1 1
B = dec2bin(0:2"k-1)-"0";
% All codewords 001 110
C = mod(B*G,2);
end b X
0O 0 0j0 0 0 O O O
o 0 110 0 1 1 1 O
01 00 1 0 0 1 1
0 1 110 1 1 1 0 1
1 0 0|1 0 0 1 0 1
1 0 111 0 1 0 1 1
1 1 011 1 0 1 1 O
@ 111|/1 1100 0
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Linear Blocl

Code: Example
1
0
G =
1

K
1
1
0
1

1
0
0
0

1 0

* Find the codeword for the message b = [0 1 1 0]

* How many codewords do this code have?

-

MATLAB: Codebook

G=[1110000;1001100;0010110;1010101];
[B C] = blockCodebook(G)
function [B C] = blockCodebook(G) b X
ol = size: 70 0 00000000
B = dec2bin(0:27k-1)-"0"; 8 8 (1) (1) (1) 8 1 8 1 (1) (1)
% All codewords
C = mod(B*G,2): 0011100 00 1 1
end O 1.0 0,1 0 O 1 1 0 O
O 1 0 1,0 0 1 1 0 0 1
0 11 0,1 0 1 1 0 1 O
1 110 0 0 0] 011100011 11
1 0 0 01 1.1 0 O O O
1 0 O 1 1 0 O 1 0 0 1,0 1 0 O 1 0 1
G= 10101100110
O 01 01 10 10110110011
1 1 0 000 1 1 1 1 0 O
_1 01 010 1_ 1 1 0 11 1 0 1 0 0 1
1 1.1 000 1 0 1 0 1 O
@ 1 11 1,1 1 1 1 1 1 1
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Review: Linear Block Codes

* Given a list of codewords for a code C, we can determine whether
C is linear by
Definition: if )_((1) and )_((2) € C, then )_((1)@)_((2) eC
Shortcut:
First check that C must contain 0.

Then, check only pairs of the non-zero codewords.
® One check = three checks

¢ (Codewords can be generated by a generator matrix
k
X =bG = Z big(l) where g(‘) is the i row of G
i=1 -

® Codebook can be generated by
working row-wise: generating each codeword one-by-one, or

working column-wise: first, reading, from G, how each bit in the
codeword is created from the bits in b; then, in the codebook, carry
out the operations on columns of b.

T

J

-

Linear Block Codes: Examples

e Repetition code:X = [b b b] b x
G=[1 1 - 1] —1 1
x=bG=bG=[b b - b]

Rok_1
n n
k
* Single-parity-check code: X = [ b ;Z bj]
j=1
G= [lkxk; lT] parity bit
k k
R==-=— b X
n k+1 0 0[O0 0 O
0O 110 1 1
1 0|1 0 1
1 111 1 0

~
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5.1 Binary Linear Block Codes

Single-Parity-Check Code, Parity, and

Introduction to Error Detection

Vectors representing 3-bit codewords

Representing the codewords in the two examples on the previous slide as vectors:

OO}(}————————/QOII 00/1(}————————/,011
1010 =~~~ —®m 101@F-———- Q.
| | | | | |
| | | | | |
| | | | | |
: oo |  Jow
| | Diad [ [ P
I 000 | P I 000 I Pid
| ('),// [ |.,//
100 1 100 110
Triple-repetition code Single—Parity—Check code

@P(5)=1—(l—p)3—3p(l—p)z P(8)=1—(1—p)3—p(1—p)zj




Achievable Performance
BSC withp = 0.2

o
0.5 U
-~
%)
045 I
4
04t
0.35 - . x4 Single—Parity—check code
I _
: (k=2)
0 is optimal among all codes
— 025 IS .
Y withn = 3,k = 2.
02} A
0.15
01k A< 1 Triple-repetition code
0.05 | | isopthnalanﬁongzﬂlcodes
. . withn =3,k = 1.
0 01 02  ftos 0.4 05 06 07
Rate

@ —C=1-H(p) ~ 0.2781

-

Evén Parity vs. Odd Parity

® Parity bit checking is used occasionally for transmitting ASCII
characters, which have 7 bits, leaving the 8th bit as a parity
bit.

® Two options:

Even Parity: Added bit ensures an even number of 1s in each
codeword.

A: 10000010
Odd Parity: Added bit ensures an odd number of 1s in each
codeword.

A: 10000011

/




Even Parity vs. Odd Parity

® Even parity and odd parity are properties of a codeword (a

vector), not a bit.

* Note: The generator matrix G = [Ix; 1"] previously

considered produces even parity codeword

X:I b ;ib,-‘

® Q: Consider a code that uses odd parity. Is it linear?

Error Control using Parity Bit

® If an odd number of bits (including the parity bit) are
transmitted incorrectly, the parity will be incorrect, thus
indicating that a parity error occurred in the transmission.
* Ex.

SUPPOSG WE use €ven parity.

Consider the codeword X = 10000010 .

® Suitable for detecting errors; cannot correct any errors

©
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1

2
0O 0 O
[0 0 O

/73NUL IDLE |'sp *

DC1
DC2
DC3
DC4
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

SOH
STX

ETX

EOT

ENQ NAK
ACK

BEL

BS

HT

LF

VT

FF

CR

SO
\S
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