Digital Communication Systems EES 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th

5. Channel Coding

System Model for Chapter 5

$\underline{\mathbf{m}}, \underline{\mathbf{d}}, \underline{\mathbf{b}}, \underline{\mathbf{s}}$
Message (Data block)

Channel
Encoder

Add
systematic redundancy

$\underline{\underline{\mathbf{m}}}, \underline{\mathbf{d}}, \hat{\mathbf{b}}, \underline{\hat{\mathbf{s}}}$

Recovered Message

Decoder

Vector Notation

- $\overrightarrow{\mathbf{v}}$: column vector
.
- $\underline{\mathbf{r}}$: row vector

$$
\left(r_{1}, r_{2}, \ldots, r_{i}, \ldots r_{n}\right)
$$

- Subscripts represent element indices inside individual vectors.
- v_{i} and r_{i} refer to the $i^{\text {th }}$ elements inside the vectors $\overrightarrow{\mathbf{V}}$ and $\underline{\mathbf{r}}$, respectively.
- When we have a list of vectors, we use superscripts in parentheses as indices of vectors.
- $\overrightarrow{\mathbf{v}}^{(1)}, \overrightarrow{\mathbf{v}}^{(2)}, \ldots, \overrightarrow{\mathbf{v}}^{(M)}$ is a list of M column vectors
- $\underline{\mathbf{r}}^{(1)}, \underline{\mathbf{r}}^{(2)}, \ldots, \underline{\mathbf{r}}^{(M)}$ is a list of M row vectors
- $\overrightarrow{\mathbf{v}}^{(i)}{ }^{\text {and }} \underline{\mathbf{r}}^{(i)}$ refer to the $i^{\text {th }}$ vectors in the corresponding lists.

Channel Decoding

- Recall

MAP decoder is optimal

ML decoder is optimal
 Codeword

Min distance
decoder is optimal
are equally
$p<0.5$
likely

1. MAP decoder is the optimal decoder.
2. When the codewords are equally-likely, the ML decoder the same as the MAP decoder; hence it is also optimal.
When the crossover probability of the $\mathrm{BSC} p$ is <0.5,
ML decoder is the same as the minimum distance decoder.

- In this chapter, we assume the use of minimum distance decoder.
- $\underline{\hat{\mathbf{x}}}(\underline{\mathbf{y}})=\arg \min _{\underline{\mathbf{x}}} d(\underline{\mathbf{x}}, \underline{\mathbf{y}})$
- Also, in this chapter, we will focus
- less on probabilistic analysis,
- but more on explicit codes.

Digital Communication Systems EES 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th
5.1 Binary Linear Block Codes

Review: Block Encoding

- We mentioned the general form of channel coding over BSC.
- In particular, we looked at the general form of block codes.

- Rate: $R=\frac{k}{n}$.

Recall that the capacity of BSC is $C=1-H(p)$.
For $p \in(0,1)$, we also have $C \in(0,1)$.
Achievable rate is <1.

c

- $\mathcal{C}=$ the collection of all codewords for the code considered.
- Each n-bit block is selected from \mathcal{C}.
- The message (data block) has k bits, so there are 2^{k} possibilities.
- A reasonable code would not assign the same codeword to different messages.
- Therefore, there are 2^{k} (distinct) codewords in \mathcal{C}.

- Ex. Repetition code with $n=3$

MATHEMATICAL SCRIPT CAPITAL C

Charbase

Search
A visual unicode database

U+1D49E: MATHEMATICAL SCRIPT CAPITAL C

GF(2)

- The construction of the codes can be expressed in matrix form using the following definition of addition and multiplication of bits:

\oplus	0	1			
0	0	1		\bullet	0
0	0	0			
1	1	0		1	0

- These are modulo-2 addition and modulo-2 multiplication, respectively.
- The operations are the same as the exclusive-or (XOR) operation and the AND operation.
- We will simply call them addition and multiplication so that we can use a matrix formalism to define the code.
- The two-element set $\{0,1\}$ together with this definition of addition and multiplication is a number system called a finite field or a Galois field, and is denoted by the label GF(2).

Modulo operation

- The modulo operation finds the remainder after division of one number by another (sometimes called modulus).
- Given two positive numbers, a (the dividend) and n (the divisor),
- a modulo $\boldsymbol{n}($ abbreviated as $\boldsymbol{a} \bmod \boldsymbol{n})$ is the remainder of the division of a by n.
- "83 mod $6 "=5$
- "5 mod $2 "=1$
- In MATLAB, $\bmod (5,2)=1$.

$$
\begin{aligned}
& \text { quotient } 13 \\
& \text { divisor } 6 \longdiv { 8 3 } \text { dividend }
\end{aligned}
$$

- Congruence relation
- $5 \equiv 1(\bmod 2)$
$\underline{18}$
5 remainder

GF(2) and modulo operation

- Normal addition and multiplication (for 0 and 1):

$$
\begin{array}{c|lll|ll}
+ & 0 & 1 & \times & 0 & 1 \\
\hline 0 & 0 & 1 & & 0 & 0 \\
0 \\
1 & 1 & 2 & 1 & 0 & 1
\end{array}
$$

- Addition and multiplication in GF(2):

\oplus	0	1					
0	0	1					
1	1	0	\quad	\bullet		0	1
:---	:---	:---	:---				
0	0	0					
1	0	1					

GF(2)

- The construction of the codes can be expressed in matrix form using the following definition of addition and multiplication of bits:

\oplus	0	1			
0	0	1		\bullet	0
0	0	0			
1	1	0		1	0

- Note that

$$
\begin{array}{ll}
x \oplus 0=x & 0 \oplus 0=0 \\
& 1 \oplus 0=1 \\
x \oplus 1=\bar{X} & 0 \oplus 1=1 \\
& 1 \oplus 1=0 \\
x \oplus X=0 & 0 \oplus 0=0 \\
& 1 \oplus 1=0
\end{array}
$$

The property above implies $\underbrace{-X}=X$
By definition, " $-x$ " is something that, when added with x, gives 0 .

- Extension: For vector and matrix, apply the operations to the elements the same way that addition and multiplication would normally apply (except that the calculations are all in $\mathrm{GF}(2)$).

Examples

- Normal vector addition:

$$
=\frac{\left.\begin{array}{lrll}
{[1} & -1 & 2 & 1
\end{array}\right]}{\left[\begin{array}{lrll}
-2 & 3 & 0 & 1
\end{array}\right]}+
$$

- Vector addition in GF(2):

Alternatively, one can also apply normal vector addition first, then apply "mod 2 " to each element:

$$
\left.=\frac{\left[\begin{array}{llll}
1 & 0 & 1 & 1
\end{array}\right]}{[0} 118 c c c\right]\left[\begin{array}{llll}
{[1} & 1 & 1 & 0
\end{array}\right]
$$

$$
=\begin{gathered}
{\left[\begin{array}{llll}
{[1} & 0 & 1 & 1
\end{array}\right]} \\
{\left[\begin{array}{llll}
0 & 1 & 0 & 1
\end{array}\right]} \\
\left.\hline \begin{array}{llll}
1 & 1 & 1 & 2
\end{array}\right] \\
{\left[\begin{array}{llll}
1 & 1 & 1 & 0
\end{array}\right]}
\end{gathered}
$$

Examples

- Normal matrix multiplication:

$$
\begin{gathered}
(7 \times(-2))+(4 \times 3)+(3 \times(-7))=-14+12+(-21) \\
{\left[\begin{array}{lll}
7 & 4 & 3 \\
2 & 5 & 6 \\
1 & 8 & 9
\end{array}\right]\left[\begin{array}{cc}
-2 & 4 \\
3 & -8 \\
-7 & 6
\end{array}\right]=\left[\begin{array}{cc}
-23 & 14 \\
-31 & 4 \\
-41 & -6
\end{array}\right]}
\end{gathered}
$$

- Matrix multiplication in GF(2):

$$
\begin{aligned}
&(1 \cdot 1) \oplus(0 \cdot 0) \oplus(1 \cdot 1)=1 \oplus 0 \oplus 1 \begin{array}{l}
\text { Alternatively, one can also apply normal } \\
\text { matrix multiplication first, then apply } \\
\text { "mod 2" to each element: }
\end{array} \\
& {\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 0
\end{array}\right] \quad \begin{array}{ll}
\text { "mod } \left.\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
1 & 0 \\
2 & 2
\end{array}\right] \xrightarrow{\bmod 2}\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 0
\end{array}\right]
\end{array}, }
\end{aligned}
$$

Digital Communication Systems EES 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th
5.1 Binary Linear Block Codes

Évariste Galois

Évariste Galois

On the morning of May 30th, 1832, two men in Paris fought a duel. Not an unusual event for those days. One of the men was shot in the gut and died the following day...

Évariste Galois

Évariste Galois

Évariste Galois

(10
 THEMATIQUE

dicaux ienme a la theorie des equations primitives solubles par ra.
On trouvera ci-jines it la duorie tes nombres

- Pour qu ctjointe [I I demonstration des theoremes snivants
bit atre du degre equation primitive soit soluble par radicaus
x°. Toutes les permatations d'une pareille équation sont de la
\&. l, m, \ldots étant , indices, qui, prenant chacun p valeurs, ind outes les racines. Les indices sont pris suivant le module p; e'est multiple de p. ultiple de p.
Le groupe quion obtient en opirant toates les substitutions de forme linćare contient, en tout

$$
p^{\prime}\left(p^{\prime}-1\right)\left(p^{\prime}-p^{\prime} \ldots p^{\prime}-p^{\prime-1}\right. \text { permutations. }
$$

Il s'en faut que dans cette généralité les équations qui lui répon soient solubles par radicaus
La condition que jai indiquée dans le Butletin de Férussac pour I'équation soit soluble par radicaux est trop restreinte; il y a peut

LIOUVILLE

The papers laid dormant until over a decade later when the letter made its way to the mathematician Liouville who took the time to read through the manuscripts and sought to their publication.

The world finally learned that as a teenager Galois had solved one of the most important problems in algebra.
ceptions, mais il y en a.
La derniére application de la théorie des équations est relative aux équations modulaires des fonctions elliptiques.
On sait que le groupe de l'íquation qui a pour racines les sinus de
l'amplitude des p^{2} - I divisions d'une période est celui-ci :
$\left.x_{h i t} \quad x_{4, i+M}\right|_{c-1-d} ;$
par conséquent léquation modulaire correspondante aura pour groupu' $\begin{array}{cc}x_{i}, & x_{\text {anitu }} \\ \vdots, n\end{array}$,
dans laquelle $\frac{1}{7}$ peut avoir les $p+1$ vaieurs

Évariste Galois: Contribution

Évariste Galois: Contribution

Évariste Galois: Life

BSC and the Error Pattern

- For one use of the channel,

- Again, to transmit k information bits, the channel is used n times.

Additional Properties in GF(2)

- The following statements are equivalent

1. $a \oplus b=c$
2. $a \oplus c=b$
3. $b \oplus c=a$

Having one of these is the same as having all three of them.

- The following statements are equivalent

1. $\underline{\mathbf{a}} \oplus \underline{\mathbf{b}}=\underline{\mathbf{c}}$
2. $\underline{\mathbf{a}} \oplus \underline{\mathbf{c}}=\underline{\mathbf{b}} \quad$ Having one of these is the same
3. $\underline{\mathbf{b}} \oplus \underline{\mathbf{c}}=\underline{\mathbf{a}}$
as having all three of them.

- In particular, because $\underline{\mathbf{x}} \oplus \underline{\mathbf{e}}=\underline{\boldsymbol{y}}$, if we are given two quantities, we can find the third quantity by summing the other two.

Linear Block Codes

- Definition: \mathcal{C} is a (binary) linear (block) code if and only if \mathcal{C} forms a vector (sub)space (over GF(2)).
Equivalently, this is the same as requiring that

$$
\text { if } \underline{\mathbf{x}}^{(1)} \text { and } \underline{\mathbf{x}}^{(2)} \in \mathcal{C} \text {, then } \underline{\mathbf{x}}^{(1)} \oplus \underline{\mathbf{x}}^{(2)} \in \mathcal{C} .
$$

- Note that any ${ }_{\text {(ronemply) }}$ linear code \mathcal{C} must contain $\underline{\mathbf{0}}$.
- Ex. The code that we considered in Problem 5 of HW4 is

$$
\mathcal{C}=\{00000,01000,10001,11111\}
$$

Is it a linear code?

MAS210 Mathematics III 3(3-0-6)
Prerequisite: Have earned credits of MAS117 or consent of Head of School
Linear algebra: vector spaces, linear transformation, matrices, determinants, systems of linear equations, Gaussian elimination, eigenvalue problems, eigenvalues and eigenvectors, diagonalization, complex matrices; introduction to complex analysis: complex numbers, analytic functions, complex integration, conformal mapping; calculus of variations; introduction to tensor analysis:
Cartesian tensors and their
algebra.

Ex. Checking Linearity

- $\mathcal{C}=\{00000,01000,10001,11111\}$
- Step 1: Check that $0 \in \mathcal{C}$.
- OK for this example.
- Step 2: Check that

$$
\text { if } \underline{\mathbf{x}}^{(1)} \text { and } \underline{\mathbf{x}}^{(2)} \in \mathcal{C} \text {, then } \underline{\mathbf{x}}^{(1)} \oplus \underline{\mathbf{x}}^{(2)} \in \mathcal{C}
$$

\oplus	00000	01000	10001	1111
00000				
01000				
10001				
11111				

Ex. Checking Linearity

- $\mathcal{C}=\{00000,01000,10001,11111\}$
- Step 1: Check that $0 \in \mathcal{C}$.
- OK for this example.
- Step 2: Check that

$$
\text { if } \underline{\mathbf{x}}^{(1)} \text { and } \underline{\mathbf{x}}^{(2)} \in \mathcal{C} \text {, then } \underline{\mathbf{x}}^{(1)} \oplus \underline{\mathbf{x}}^{(2)} \in \mathcal{C}
$$

- Here, we have many counter-examples. So, the code is not linear.

\oplus	$\mathbf{0 0 0 0 0}$	$\mathbf{0 1 0 0 0}$	$\mathbf{1 0 0 0 1}$	$\mathbf{1 1 1 1 1}$
$\mathbf{0 0 0 0 0}$	00000	01000	10001	11111
$\mathbf{0 1 0 0 0}$	01000	00000	11001	10111
$\mathbf{1 0 0 0 1}$	10001	11001	00000	01110
$\mathbf{1 1 1 1 1}$	11111	10111	01110	00000

Checking Linearity

- Step 1: Check that $0 \in \mathcal{C}$.
- Step 2: Check that

$$
\text { if } \underline{\mathbf{x}}^{(1)} \text { and } \underline{\mathbf{x}}^{(2)} \in \mathcal{C} \text {, then } \underline{\mathbf{x}}^{(1)} \oplus \underline{\mathbf{x}}^{(2)} \in \mathcal{C} .
$$

- It may seem that we need to check $|\mathcal{C}|^{2}$ pairs.
- Actually, we need to check only $\binom{n-1}{2}$ pairs.

\oplus	00000	01000	10001	11111	$\underline{\underline{x}} \oplus \underline{0}=\underline{\underline{x}}$
00000					
01000	+ater:	00000	11001	10111	
10001		11001	00000	01110	$\underline{\underline{\mathbf{x}}} \underline{\underline{\mathrm{x}}} \underline{\underline{\mathbf{x}}} \underline{\mathbf{0}}$
11111		10111	01110	00000	
$\underline{\underline{\mathbf{x}}}^{(1)} \oplus \underline{\mathbf{x}}^{(2)}=\underline{\mathbf{x}}^{(2)} \oplus \underline{\underline{\mathbf{x}}}^{(1)}$					

Ex. Creating Linearity

- We have checked that
$\mathcal{C}=\{00000,01000,10001,11111\}$
is not linear.
- Change one codeword in \mathcal{C} to make the code linear.

\oplus	00000			
00000				

Ex. Creating Linearity

- We have checked that $\mathcal{C}=00000601000,1000111114$ is not linear.
- Change one codeword in \mathcal{C} to make the code linear.

```
For linearity, we always need \underline{0}
```

If we want these two to be in our code, then their sum must be in our code too. So, we change 11111 to 11001.

\oplus	00000	01000	10001	11001
$\mathbf{0 0 0 0 0}$				
$\mathbf{0 1 0 0 0}$			11001	10001
$\mathbf{1 0 0 0 1}$				01000
$\mathbf{1 1 1 1 1}$				

Ex. Creating Linearity

- We have checked that

$$
\mathcal{C}=\{00000,01000,10001,11111\}
$$

is not linear.

- Change one codeword in \mathcal{C} to make the code linear.
- Three solutions: 11001
- $\mathcal{C}=\{00000,01000,10001,11114\}$
- $\mathcal{C}=\{00000,01000,10111,10004,11111\}$

01110

- $\mathcal{C}=\{00000, \theta 10 \theta \theta, 10001,11111\}$

\oplus	00000	01000	10001	11111
$\mathbf{0 0 0 0 0}$	00000	01000	10001	11111
$\mathbf{0 1 0 0 0}$	01000	00000	11001	10111
$\mathbf{1 0 0 0 1}$	10001	11001	00000	01110
$\mathbf{1 1 1 1 1}$	11111	10111	01110	00000

Linear Block Codes: Motivation (1)

- Why linear block codes are popular?
- Recall: General block encoding
- Characterized by its codebook.
- \circ The table that lists all the 2^{k} mapping from the k-bit info-block $\underline{\mathbf{s}}$ to the n-bit codeword $\underline{\mathbf{x}}$ is called the codebook.
\circ The M info-blocks are denoted by $\underline{\mathbf{s}}^{(1)}, \underline{\mathbf{s}}^{(2)}, \ldots, \underline{\mathbf{s}}^{(M)}$. The corresponding M codewords are denoted by $\underline{\mathbf{x}}^{(1)}, \underline{\mathbf{x}}^{(2)}, \ldots, \underline{\mathbf{x}}^{(M)}$, respectively.

index i	info-block $\underline{\mathbf{s}}$	codeword $\underline{\mathbf{x}}$
1	$\underline{\mathbf{s}}^{(1)}=000 \ldots 0$	$\underline{\mathbf{x}}^{(1)}=$
2	$\underline{\mathbf{s}}^{(2)}=000 \ldots 1$	$\underline{\mathbf{x}}^{(2)}=$
\vdots	\vdots	\vdots
M	$\underline{\mathbf{s}}^{(M)}=111 \ldots 1$	$\underline{\mathbf{x}}^{(M)}=$

- Can be realized by combinational/combinatorial circuit. - If lucky, can used K-map to simplify the circuit.

Linear Block Codes: Motivation (2)

- Why linear block codes are popular?
- Linear block encoding is the same as matrix multiplication.
- See next slide.
- The matrix replaces the table for the codebook.
- The size of the matrix is only $k \times n$ bits.
- Compare this against the table (codebook) of size $2^{k} \times(k+n)$ bits for general block encoding.
- Linearity \Rightarrow easier implementation and analysis
- Performance of the class of linear block codes is similar to performance of the general class of block codes.
- Can limit our study to the subclass of linear block codes without sacrificing system performance.

Example

- $\mathcal{C}=\{00000,01000,10001,11001\}$
- Let

$$
\mathbf{G}=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

- Find $\underline{\mathbf{b}} \mathbf{G}$ when $\underline{\mathbf{b}}=000$.
- Find $\underline{\mathbf{b}} \mathbf{G}$ when $\underline{\mathbf{b}}=\left[\begin{array}{ll}0 & 1\end{array}\right]$.
- Find $\underline{\mathbf{b}} \mathbf{G}$ when $\underline{\mathbf{b}}=\left[\begin{array}{ll}1 & 0\end{array}\right]$.
- Find $\underline{\mathbf{b}} \mathbf{G}$ when $\underline{\mathbf{b}}=\left[\begin{array}{ll}1 & 1\end{array}\right]$.

Block Matrices

- A block matrix or a partitioned matrix is a matrix that is interpreted as having been broken into sections called blocks or submatrices.
- Examples:

$$
\begin{aligned}
& \left.\left(\begin{array}{cc}
{ }^{10} \mathrm{a}^{-} & 6 \\
9
\end{array}\right] \begin{array}{ll}
6 & \mathrm{~B}_{4}^{4} \\
3 \\
3 & 5
\end{array}\right)
\end{aligned}
$$

Block Matrix Multiplications

- Matrix multiplication can also be carried out blockwise (assuming that the block sizes are compatible).

[https: / / youtu.be/FX4C-IpTFgY?t=1103]

Ex: Block Matrix Multiplications

$$
\begin{aligned}
& =\left(\begin{array}{lll}
108 & 73 & 136 \\
155 & 85 & 164
\end{array} \begin{array}{|lllll}
175 & 150 & 193 & 126 & 149 \\
224 & 213 & 197 & 158 & 165
\end{array}\right) \\
& \mathrm{AC}+\mathrm{BE} \quad \mathrm{AD}+\mathrm{BF} \\
& \left(\begin{array}{cccc}
10 & 6 \\
9 & 7 & X_{3}^{6} & 4 \\
5 & 3 \\
\hline
\end{array}\right) \times\left(\begin{array}{llll}
2 & 2 & 5 & 10 \\
3 & 3 & 4 & 5 \\
3 & 3 \mathrm{G} 4 & 1 \\
7 & 2 & 5 & 3 \\
8 & 3 & 6 & 9
\end{array}\right)\left(\begin{array}{cccc}
2 & 10 & 2 & 5 \\
10 & 5 & 3 & 6 \\
1 & 5 \mathrm{H} & 5 & 6 \\
10 & 6 & 10 & 3 \\
8 & 3 & 6 & 5
\end{array}\right) \\
& =\left(\begin{array}{llll}
108 & 73 & 136 & 175 \\
155 & 85 & 164 & 224
\end{array}\right)\left(\begin{array}{llll}
150 & 193 & 126 & 149 \\
213 & 197 & 158 & 165
\end{array}\right)
\end{aligned}
$$

Linear Block Codes: Generator Matrix

 such that, for any codeword $\underline{\mathbf{x}}$, there is a message vector $\underline{\mathbf{b}}$ which produces $\underline{\mathbf{X}}$ by

$$
\underline{\mathbf{x}}=\underline{\mathbf{b}} G
$$

From $\underline{\mathbf{b}}$ to $\underline{\mathbf{x}}$

$$
\underline{\mathbf{x}}=\underline{\mathbf{b}} \mathbf{G}=\left[\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{k}
\end{array}\right]
$$

$$
=b_{1} \underline{\mathbf{g}}^{(1)} \bigoplus b_{2} \underline{\mathbf{g}}^{(2)} \bigoplus \cdots \bigoplus b_{k} \underline{\mathbf{g}}^{(k)}=\sum_{j=1}^{k} b_{j} \underline{\mathbf{g}}^{(j)}
$$

- Any codeword is simply a linear combination of the rows of \mathbf{G}.

Linear Combination in GF(2)

- A linear combination is an expression constructed from a set of terms by multiplying each term by a constant (weight) and adding the results.
- For example, a linear combination of x and y would be any expression of the form $a x+b y$, where a and b are constants.
- General expression:

$$
c_{1} \underline{\mathbf{a}}^{(1)}+c_{2} \underline{\mathbf{a}}^{(2)}+\cdots+c_{k} \underline{\mathbf{a}}^{(k)}
$$

- In $\operatorname{GF}(2), c_{i}$ is limited to being 0 or 1 . So, a linear combination is simply a sum of a sub-collection of the vectors.

Linear Block Codes: Generator Matrix

For any linear code, there is a matrix $\mathbf{G}=\left[\begin{array}{c}\underline{\underline{g}^{(1)}} \\ \frac{\mathbf{g}^{(2)}}{\vdots} \\ \frac{\mathbf{g}^{(k)}}{}\end{array}\right]_{k \times n}$
called the generator matrix such that, for any codeword $\underline{\mathbf{x}}$, there is a message vector $\underline{\mathbf{b}}$ which produces $\underline{\mathbf{x}}$ by

Note:

$$
\underline{\mathbf{x}=\underline{\mathbf{b}} \mathbf{G}}=\underbrace{\sum_{j=1}^{k} b_{j} \underline{\mathbf{g}}^{(j)}}{ }^{\text {mod-2 summation }}
$$

(1) Any codeword can be expressed as a linear combination of the rows of \mathbf{G}
$\underline{\text { Fact: If }}$ a code is generated by plugging in every possible $\underline{\mathbf{b}}$ into $\underline{\mathbf{x}}=\underline{\mathbf{b}} \mathbf{G}$, then the code will automatically be linear.

Proof

If \mathbf{G} has k rows. Then, $\underline{\mathbf{b}}$ will have k bits. We can list them all as $\underline{\mathbf{b}}^{(1)}, \underline{\mathbf{b}}^{(2)}, \ldots, \underline{\mathbf{b}}^{\left(2^{k}\right)}$. The corresponding codewords are

$$
\underline{\mathbf{x}}^{(i)}=\underline{\mathbf{b}}^{(i)} \mathbf{G} \text { for } i=1,2, \ldots, 2^{k}
$$

Let's take two codewords, say, $\underline{\mathbf{x}}^{\left(i_{1}\right)}$ and $\underline{\mathbf{x}}^{\left(i_{2}\right)}$. By construction, $\underline{\mathbf{x}}^{\left(i_{1}\right)}=\underline{\mathbf{b}}^{\left(i_{1}\right)} \mathbf{G}$ and $\underline{\mathbf{x}}^{\left(i_{2}\right)}=\underline{\mathbf{b}}^{\left(i_{2}\right)} \mathbf{G}$. Now, consider the sum of these two codewords:

$$
\underline{\mathbf{x}}^{\left(i_{1}\right)} \oplus \underline{\mathbf{x}}^{\left(i_{2}\right)}=\underline{\mathbf{b}}^{\left(i_{1}\right)} \mathbf{G} \oplus \underline{\mathbf{b}}^{\left(i_{2}\right)} \mathbf{G}=\left(\underline{\mathbf{b}}^{\left(i_{1}\right)} \oplus \underline{\mathbf{b}}^{\left(i_{2}\right)}\right) \mathbf{G}
$$

Note that because we plug in every possible $\underline{\mathbf{b}}$ to create this code, we know that $\underline{\mathbf{b}}^{\left(i_{1}\right)} \oplus \underline{\mathbf{b}}^{\left(i_{2}\right)}$ should be one of these $\underline{\mathbf{b}}$. Let's suppose $\underline{\mathbf{b}}^{\left(i_{1}\right)} \oplus \underline{\mathbf{b}}^{\left(i_{2}\right)}=\underline{\mathbf{b}}^{\left(i_{3}\right)}$ for some $\underline{\mathbf{b}}^{\left(i_{3}\right)}$. This means

$$
\underline{\mathbf{x}}^{\left(i_{1}\right)} \oplus \underline{\mathbf{x}}^{\left(i_{2}\right)}=\underline{\mathbf{b}}^{\left(i_{3}\right)} \mathbf{G}
$$

But, again, by construction, $\underline{\mathbf{b}}^{\left(i_{3}\right)} \mathbf{G}$ gives a codeword $\underline{\mathbf{x}}^{\left(i_{3}\right)}$ in this code. Because the sum of any two codewords is still a codeword, we conclude that the code is linear.

Linear Block Code: Example

$$
\mathbf{G}=\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right)
$$

- Find the codeword for the message $\underline{\mathbf{b}}=\left[\begin{array}{ll}1 & 0\end{array}\right]$
- Find the codeword for the message $\underline{\mathbf{b}}=\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$

Digital Communication Systems EES 452

Asst. Prof. Dr. Prapun Suksompong prapun@sitit.tu.ac.th
5.1 Binary Linear Block Codes

Review: Linear Block Code and Generator Matrix

Digital Communication Systems EES 452

Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th
5.1 Binary Linear Block Codes

Generator Matrix, Codebook, and Repetition Code

Linear Block Code: Codebook

$\mathbf{G}=\left(\begin{array}{llllll}1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0\end{array}\right)$

$$
\begin{aligned}
\underline{\mathbf{x}} & =\underline{\mathbf{b}} \mathbf{G}=\left(b_{1} b_{2} b_{3}\right)\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right) \\
& =\left(b_{1}, b_{2}, b_{3}, b_{1} \oplus b_{3}, b_{2} \oplus b_{3}, b_{1} \oplus b_{2}\right)
\end{aligned}
$$

$\underline{\mathbf{b}}$					$\underline{\mathbf{x}}$					
0	0	0	0	0	0	0	0	0		
0	0	1	0	0	1	1	1	0		
0	1	0	0	1	0	0	1	1		
0	1	1	0	1	1	1	0	1		
1	0	0	1	0	0	1	0	1		
1	0	1	1	0	1	0	1	1		
1	1	0	1	1	0	1	1	0		
1	1	1	1	1	1	0	0	0		

MATLAB: Codebook

$\mathrm{G}=\left[\begin{array}{llllllllllllllllll}1 & 0 & 0 & 1 & 0 & 1 ; & 0 & 1 & 0 & 0 & 1 & 1 ; & 0 & 0 & 1 & 1 & 1 & 0\end{array}\right] ;$
$[\mathrm{B} C]=\mathrm{blockCodebook}(\mathrm{G})$
function [BC] = blockCodebook(G)
[k n] = size(G);
\% All data words
$B=\operatorname{dec} 2 b i n(0: 2 \wedge k-1)-{ }^{\prime} 0^{\prime} ;$
\% All codewords
$C=\bmod \left(B^{*} G, 2\right)$;
end

$$
\mathbf{G}=\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right)
$$

$\underline{\mathbf{b}}$				$\underline{\mathbf{x}}$					
0	0	0	0	0	0	0	0	0	
0	0	1	0	0	1	1	1	0	
0	1	0	0	1	0	0	1	1	
0	1	1	0	1	1	1	0	1	
1	0	0	1	0	0	1	0	1	
1	0	1	1	0	1	0	1	1	
1	1	0	1	1	0	1	1	0	
1	1	1	1	1	1	0	0	0	

Linear Block Code: Example

$$
\mathbf{G}=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

- Find the codeword for the message $\underline{\mathbf{b}}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$
- Find the codeword for the message $\underline{\mathbf{b}}=\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$
- How many codewords do this code have?

MATLAB: Codebook

$\mathrm{G}=\left[\begin{array}{llllllllllllllllllllllllllll}1 & 1 & 1 & 0 & 0 & 0 & 0 ; & 1 & 0 & 0 & 1 & 1 & 0 & 0 ; & 0 & 0 & 1 & 0 & 1 & 1 & 0 ; & 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right] ;$ $\left[\begin{array}{ll}B & C\end{array}\right]=$ blockCodebook(G)
function $[\mathrm{B} C]=\mathrm{blockCodebook}(\mathrm{G})$
[k n] = size(G);
\% All data words
$B=\operatorname{dec} 2 b i n(0: 2 \wedge k-1)-{ }^{\prime} 0^{\prime} ;$
\% All codewords
$C=\bmod \left(B^{*} G, 2\right)$;
end
$\mathbf{G}=\left[\begin{array}{lllllll}1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right]$

$\underline{\mathbf{b}}$				$\underline{\mathbf{x}}$						
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	1	0	1	0	1
0	0	1	0	0	0	1	0	1	1	0
0	0	1	1	1	0	0	0	0	1	1
0	1	0	0	1	0	0	1	1	0	0
0	1	0	1	0	0	1	1	0	0	1
0	1	1	0	1	0	1	1	0	1	0
0	1	1	1	0	0	0	1	1	1	1
1	0	0	0	1	1	1	0	0	0	0
1	0	0	1	0	1	0	0	1	0	1
1	0	1	0	1	1	0	0	1	1	0
1	0	1	1	0	1	1	0	0	1	1
1	1	0	0	0	1	1	1	1	0	0
1	1	0	1	1	1	0	1	0	0	1
1	1	1	0	0	1	0	1	0	1	0
1	1	1	1	1	1	1	1	1	1	1

Review: Linear Block Codes

- Given a list of codewords for a code \mathcal{C}, we can determine whether \mathcal{C} is linear by
- Definition: if $\underline{\mathbf{x}}^{(1)}$ and $\underline{\mathbf{x}}^{(2)} \in \mathcal{C}$, then $\underline{\mathbf{x}}^{(1)} \oplus \underline{\mathbf{x}}^{(2)} \in \mathcal{C}$
- Shortcut:
- First check that \mathcal{C} must contain $\underline{\mathbf{0}}$
- Then, check only pairs of the non-zero codewords.
- One check $=$ three checks
- Codewords can be generated by a generator matrix
- $\underline{\mathbf{x}}=\underline{\mathbf{b}} \mathbf{G}=\sum_{i=1}^{k} b_{i} \underline{\mathbf{g}}^{(i)}$ where $\underline{\mathbf{g}}^{(i)}$ is the $i^{\text {th }}$ row of \mathbf{G}
- Codebook can be generated by
- working row-wise: generating each codeword one-by-one, or
- working column-wise: first, reading, from \mathbf{G}, how each bit in the codeword is created from the bits in $\underline{\mathbf{b}}$; then, in the codebook, carry out the operations on columns of $\underline{\mathbf{b}}$.

Linear Block Codes: Examples

- $\mathbf{G}=\left[\begin{array}{llll}1 & 1 & \cdots & 1\end{array}\right]$

b	\mathbf{x}		
0	0	0	0
1	1	1	1

- $\underline{\mathbf{x}}=\underline{\mathbf{b}} \mathbf{G}=b \mathbf{G}=\left[\begin{array}{llll}b & b & \cdots & b\end{array}\right]$
- $R=\frac{k}{n}=\frac{1}{n}$
- Single-parity-check code: $\underline{\mathbf{x}}=[\square_{\underline{\mathbf{b}}}^{; \underbrace{\sum_{j=1}^{k} b_{j}}_{\text {parity bit }}]}$

$$
\mathbf{G}=\left[\mathbf{I}_{k \times k} ; \underline{\mathbf{1}}^{T}\right]
$$

- $R=\frac{k}{n}=\frac{k}{k+1}$

\mathbf{b}		\mathbf{x}		
0	0	0	0	0
0	1	0	1	1
1	0	1	0	1
1	1	1	1	0

Digital Communication Systems EES 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th

5.1 Binary Linear Block Codes

Single-Parity-Check Code, Parity, and Introduction to Error Detection

Vectors representing 3-bit codewords

Representing the codewords in the two examples on the previous slide as vectors:

Triple-repetition code
$P(\mathcal{E})=1-(1-p)^{3}-3 p(1-p)^{2}$

Single-Parity-check code

$$
P(\mathcal{E})=1-(1-p)^{3}-p(1-p)^{2}
$$

Achievable Performance

BSC with $p=0.2$

61

Related Idea:

Even Parity vs. Odd Parity

- Parity bit checking is used occasionally for transmitting ASCII characters, which have 7 bits, leaving the 8 th bit as a parity bit.
- Two options:
- Even Parity: Added bit ensures an even number of 1 s in each codeword.
- A: 10000010
- Odd Parity: Added bit ensures an odd number of 1 s in each codeword.
- A: 10000011

Even Parity vs. Odd Parity

- Even parity and odd parity are properties of a codeword (a vector), not a bit.
- Note:The generator matrix $\mathbf{G}=\left[\mathbf{I}_{k \times k} ; \mathbf{1}^{T}\right]$ previously considered produces even parity codeword

$$
\underline{\mathbf{x}}=\left[\begin{array}{l}
\left.\underline{\mathbf{b}} \quad ; \sum_{j=1}^{k} b_{j}\right] \\
\square
\end{array}\right.
$$

- Q: Consider a code that uses odd parity. Is it linear?

Error Control using Parity Bit

- If an odd number of bits (including the parity bit) are transmitted incorrectly, the parity will be incorrect, thus indicating that a parity error occurred in the transmission.
- Ex.
- Suppose we use even parity.
- Consider the codeword $\underline{\mathbf{x}}=10000010$
- Suitable for detecting errors; cannot correct any errors

The ASCII Coded Character Set

(American Standard Code for Information Interchange)	6	0	0	0	0	1	1	1	1
Bit	5	0	0	1	1	0	0	1	1
Number		4	0	1	0	1	0	1	0
		1							
	$H e x$	$1 s t$	0	1	2	3	4	5	6
			1						

$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	2nd
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	A
1	0	1	1	B
1	1	0	0	C
1	1	0	1	D
1	1	1	0	E
1	1	1	1	F

NUL	${ }^{16}$ DLE
SOH	DC1
STX	DC2
ETX	DC3
EOT	DC4
ENQ	NAK
ACK	SYN
BEL	ETB
BS	CAN
HT	EM
LF	SUB
VT	ESC
FF	FS
CR	GS
SO	RS
SI	US

${ }^{3} \mathrm{SP}$		${ }^{64}$ @			2p
!	1	A	Q	a	q
"	2	B	R	b	r
\#	3	C	S	c	S
\$	4	D	T	d	t
\%	5	E	U	e	u
\&	6	F	V	f	v
,	7	G	W	g	W
(8	H	X	h	X
)	9	I	Y	i	y
*	:	J	Z	j	z
+	;	K	[k	\{
,	<	L	1	I	
-	$=$	M]	m	\}
	>	N	\wedge	n	\sim
/	?	O	-	0	DEL

